
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 6, May 2009

Integrating Abstraction Techniques for Formal Verification
of Analog Designs

Mohamed H. Zaki∗ , William Denman† , and Sofiène Tahar‡ ,
Concordia University, Montreal, Quebec, Canada

and

Guy Bois§

Ecole Polytechnique de Montreal, Montreal, Quebec, Canada

DOI: 10.2514/1.44289

The verification of analog designs is a challenging and exhaustive task that requires deep
understanding of physical behaviors. In this paper, we propose a qualitative-based predicate
abstraction method for the verification of a class of nonlinear analog circuits. In the proposed
method, system equations are automatically extracted from a circuit diagram by means
of a bond graph. Verification is applied based on combining techniques from constraint
solving and computer algebra along with symbolic model checking. Our methodology has
the advantage of avoiding exhaustive simulation normally encountered in the verification
of analog designs. To this end, we have used Dymola, Hsolver, SMV, and Mathematica to
implement the verification flow. We illustrate the methodology on several analog examples
including Colpitts and tunnel diode oscillators.

I. Introduction

THE successful application of formal methods to the verification of digital and software systems has motivated
research toward extending the verification techniques beyond the discrete domain. Consequently, this has encour-

aged the development of techniques to verify real-time and hybrid behaviors. Such behavior can be observed in both
the aerospace and aeronautical domains, where formal verification has been used to ensure safety and correctness
properties. For instance, Xia et al. [1] combined constraint solving and abstraction to check for collision avoidance.
A mechanical landing gear system was formally verified using theorem proving in [2], whereas the correctness of
the embedded software in avionics applications was checked using abstract interpretation [3] as part of the Astree
project. The focus of our paper is the verification of the analog behavior of embedded systems that can be used in
designs with safety critical environments.

In general, embedded systems are characterized by their reactive and real-time dynamical behavior with respect
to their environment. This interaction is often facilitated through sensors to capture the state of the environment
and actuators to change or update the environment (see Fig. 1a). Analog designs are a cornerstone in embedded
systems, which are required at the interface between the circuitry and the environment. The important functionalities

Received 10 March 2009; accepted for publication 15 March 2009. Copyright © 2009 by theAmerican Institute ofAeronautics
and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include
the code 1542-9423/09 $10.00 in correspondence with the CCC.∗ Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada. mzaki@
ece.concordia.ca.
† Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada. w_denm@
ece.concordia.ca.
‡ Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada. tahar@ece.concordia.ca.
§ Genie Informatique, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada. guy.bois@polymtl.ca.

373

ZAKI ET AL.

A/D D/A

Discrete Controller

Actuator

Discrete Controller

Sensor

CPU

MemorySoftware

Continuous System

Mechanical/Dynamics

gniledomlaroivaheB)bledomerutcetihcrA)a

Input EventsOutput Events

ODEs Selector

Reset/Initialization

Continuous
System (ODEs)

x = f(x)

Thershold Detector

Event Generator

Flow solution (x)

Fig. 1 Embedded systems.

of such designs are the processing of analog signals. Other functionalities include filtering, frequency synthesis, and
generating timing references [4].

Hybrid systems theory was developed to deal with heterogeneous behavior. Specifically, to fully understand the
system’s behavior and meet high-performance specifications, the designer must model all dynamic interactions. These
interactions can become very important when there are tight integrations or strong interactions among different parts
of the system. For instance, at the specification level, the embedded system architecture illustrated in Fig. 1a can be
modeled in an abstract way as shown in Fig. 1b. The digital controller is modeled by finite state machines (FSMs),
whereas the dynamic environment is described using systems of ordinary differential equations (ODEs). In addition,
the sensor and A/D interface can be modeled as a threshold detector and event generator, respectively, whereas the
actuator and D/A components can be modeled as switches that choose between different system ODEs and set the
initialization and reset condition necessary for correct functionality.

In this respect, the dynamic behavior of analog systems is generally modeled using systems of differential algebraic
equations (DAEs), but generating the equations from a circuit diagram is not trivial. Specifically, the DAEs must
accurately describe the behavior of the circuit while remaining simple enough to be verified using automated tools.

In addition, the verification of analog designs is a challenging task because of the complexity of modeling and
verifying continuous-time behavior, when compared to digital designs. For instance, the digital design verification
is based on the validation of abstract models that reside in a finite state space. In contrast, the functionality of analog
designs depends on continuous electrical quantities, device parameters, in addition to parasitics and current leakage.
All those factors can drastically change the behavior of an analog design, making conventional finite-state verification
techniques inadequate. Consider the situation that a voltage at a specific node should not exceed a certain value.
Such a property is important, as a voltage exceeding a certain specified value can lead to failure of functionality and
ultimately to a breakdown of the design, which can result in undesirable consequences.

Traditionally, simulation is used for the evaluation of a system’s functionality. However, simulation is often done
manually in an informal fashion and the search of the state space is not complete. As a consequence, simulation
methods lack the rigor needed to ensure correctness of the design. In addition, simulation falls short of validating
interesting properties of the design behavior such as temporal requirements. Another problem is caused by the fact
that although a design is defined in advance, one cannot ensure a priori that the desired properties will exactly be
met during manufacturing of the actual circuit.

In summary, the analog design process must ensure, with a high degree of confidence, the proper functionality
in all possible situations and be able to meet the performance requirements. This motivates the necessity of using
formal verification methodologies throughout the design process.

This paper demonstrates a novel verification flow to verify functional properties of analog designs. The basic idea
is to extract the design equations automatically from the corresponding circuit diagram, by means of bond graph
transformations [5]. An approach based on combining predicate abstraction and constraint solving is then applied to
verify the properties of interest.

374

ZAKI ET AL.

Bond graphs are a domain independent framework for modeling physical systems, which is based on the flow of
power between abstract objects. This allows for the universal treatment of different physical domains. The benefit
of using bond graphs as a modeling framework is the representation of designs using the concepts of energy flow,
effort and conservation. Additionally, the causality of bond graphs can be automatically generated [6], which leads
to the automatic extraction of DAEs. Moreover, since bond graphs are object oriented, larger models can be built
from simpler blocks reducing the need for a complex equation layer [5].

Abstraction methods for verification started with the seminal paper on abstract interpretation [7]. Since then, dif-
ferent abstraction approaches were developed to tackle different issues in the verification. One of the most successful
approaches is predicate abstraction [8]. In this approach, the state space is divided into a finite set of regions and a set
of rules is used to define the transition between these regions in a way that the generated state transition system can
be verified using model checking. Among the proposed enhancements of predicate abstraction is the lazy abstraction
approach [9]. The basic idea here is that, instead of generating the entire abstract model, a region is abstracted only
when it is needed in the verification step.

The different steps of the proposed methodology are shown in Fig. 2. The methodology consists of two parts:
namely modeling and verification. In the modeling section, the circuit model is analyzed and simplified to obtain the
system of equations necessary for the verification.

At first, we require that the circuit in question be described in Dymola [10] using an electrical circuit diagram,
which can be translated automatically to the corresponding bond graph. The circuit components are then represented
by generic objects that have the same physical quantities as in the circuit diagram, but are connected by bonds
that explicitly show the flow of power. The bond graphs are inherently acausal, but by assigning causality to the
components, the system’s state equations can be automatically generated using Dymola and the BondLib library [5].
Dymola is a modeling framework and BondLib contains the bond graph models and components. The advantage of
using Bondlib is that it preserves the behavior of the corresponding Spice models of electrical components.

Given the design equations and the property of interest, the verification consists of two complementary stages. First
invariant checking is applied to verify properties on the extracted system of equations. Because of incompleteness, a
negative result does not disprove the property; in this case a refinement of the abstract states by predicate abstraction
techniques is used to verify the properties. The property verification provides the advantage of avoiding explicit

Predicate
Abstraction

Based
Verification

Refinement

Property is
verified

Property
verification
is unknown

Modeling

Verification

Invariant
Checking

Dymola/
BondLib

Dymola/
Modelica

Analog
Design

Bond
Graphs

ODEsSpecification
Properties

Fig. 2 Proposed verification flow.

375

ZAKI ET AL.

computation of reachable sets. If the property cannot be verified at this stage, refinement is needed only for the
nonverified regions by adding more predicates. Verification is then applied on the newly generated abstract model¶ .

The proposed methodology has the advantage of avoiding exhaustive simulation usually encountered during the
verification. To this end, we have combined several tools to implement the verification flow. Basically, Dymola [10]
modeling engine is used to extract the design equations from the circuits’ schematics, whereas Hsolver [11] and
Mathematica [12] along with the model checker SMV [13] are used in the verification phase to construct the abstract
model from the design and to verify it against the specification properties. We illustrate the methodology on several
analog examples including Colpitts and tunnel diode oscillator circuits.

The rest of the paper is organized as follows: we start with an overview of the relevant work in Sect. II. In Sect. III,
we provide the theory behind bond graphs and analog modeling followed by the verification techniques in Sect. IV.
Experimental results are shown in Sect. VII, before concluding the paper with Sect. VIII.

II. Related Work
The proposed verification methodology spans through many different research domains. Therefore we will only

highlight the most crucial information including the work on bond graphs for the analysis of analog designs.

A. Bond Graphs for System Design and Verification
Bond graphs have been successfully extended to aid in the verification of aeronautical systems. In [14], bond graphs

are used to model mechanics for different aeronautical systems. The accuracy of the model was proven via simulation.
The first work for the formal verification of bond graph models was proposed in [15], where bond graphs were used to
represent the complex mechanics of a landing gear system. Verification using extended duration calculus was applied
on the extracted equations. However, the proposed approach was limited to simple linear continuous, whereas our
methodology is developed to deal with more realistic nonlinear behaviors.

Researchers also explored the modeling of analog designs using bond graphs. In [5], bond graphs are used to
model an analog inverter, demonstrating that bond graphs constructed at different levels of abstraction can represent
simpler models. In [6], bond graphs are suggested as an addition to the framework of SystemC-AMS to aid in the
modeling and simulation of analog circuits. Simulation was the standard tool for the analog design. On the contrary,
we benefit from advances in formal verification of analog designs to propose a novel verification framework for
analog designs modeled using bond graphs.

B. Analog Design Verification
The verification of analog circuits started with the work in [16], where the authors constructed a finite-state discrete

abstraction of electronic circuits by partitioning the continuous state space into fixed size hypercubes and computed
the reachability relations between these cubes using numerical techniques. In [17], the authors tried to overcome the
expensive computational method in [16], by combining discretization and projection techniques of the state space,
hence reducing its dimension.Although the approach in [17] is less precise due to the use of projection techniques, it is
still sound. Variant approaches of the latter analysis were proposed. For instance, the model checking tools d/dt [18],
Checkmate [19], and PHaver [20] were adapted and used in the verification of a biquad low-pass filter [18], a tunnel
diode oscillator and a �� modulator [19], and voltage controlled oscillators [20]. In [21], the authors used intervals
to construct the abstract state space, while using heuristics to identify possible transition between adjacent regions.
The main difference with [16] is that they allow variable-sized regions. In [22], the authors proposed a nonlinear
approximation for reachable states of analog designs, where the state space exploration algorithms are handled with
Taylor approximations over interval domains. All of the above surveyed formal methods limit the verification of the
circuit to a predefined time bound because they depend on explicit state exploration. In contrast, we propose in this
paper qualitative-based methods for the construction and verification of abstract models, which overcome the time
bound requirement. A detailed literature overview of analog formal verification can be found in [23].

¶ We use a simple refinement procedure based on interval methods for ODEs that identifies and eliminates the spurious
counterexamples, however, its description is outside the scope of this paper.

376

ZAKI ET AL.

C. Predicate Abstraction
In [24], the authors combined predicate abstraction with convex polyhedral analysis for the verification of reach-

ability properties of linear hybrid systems. A similar but more general abstraction approach was proposed in [25]. In
[26] a qualitative-based approach was developed for an abstract model generation for hybrid systems, based on higher
derivative analysis. We distinguish ourselves from the above in several aspects. First, although the predicates used
in [24] are manually provided, we extract qualitative predicates from the system behavior, which can complement
the qualitative predicates presented in [26]. We also use different ideas for the transition relation, based on a variant
of the mean value theorem (MVT).

An invariant-based approach was proposed in [27], where the problem of constructing invariants is turned into a
constraint-solving problem. In [28], the authors proposed a similar framework using the idea of barrier certificates.
Barrier certificates, if they exist, are invariants that separate system behavior from a bad state and hence provide
a safety verification approach. The work presented in this paper is different from the above mentioned work. We
distinguish ourselves by not limiting the verification to invariant checking, allowing more reasoning capabilities on
the circuits of interest.

III. Analog Design Modeling
The analog component of embedded systems is usually composed of circuits built from basic passive and active

components (resistors, capacitance, inductance, transistors, etc.), connected to various current and voltage sources
in a certain topology, achieving a specific desirable behavior (e.g., filtering, amplification, etc.). In this section we
will provide the method of obtaining the equations describing the design behavior from the design description.

A. Bond Graphs as a Model for Analog Designs
Bond graphs were introduced by Paynter [29] who hypothesized that all physical systems and the interactions

between them could be modeled using energy and power alone. His work was extended later on by Karnopp and
Rosenberg [30] to enable the bond graph theory to be used in practice. They developed multiport objects that could
be used with power bonds to model the flow of energy and information. The benefit of a modeling framework based
on energy flow is that different domains can be analyzed using the same methodology.

Bond graphs define a necessary and sufficient set of primitives for the modeling of a wide range of practical
systems. The necessary and sufficient set of primitives consists of five elements, but normally a more practical
set of nine elements is used as shown in Table 1. The storage group contains the elements for capacitive storage
(C type) and inductive storage (I type). The supply group contains the sources of effort and flow. The reversible
transformation group contains a transducer and gyrator. The irreversible transformation group contains the elements
for thermal losses and entropy-producing processes, whereas the distribution group contains junctions that represent
the generalized domain independent Kirchhoff current and voltage laws [31].

1. Connections
Bond graphs are based on the first principle of energy conservation. The most basic element of a bond graph is the

power bond (Fig. 3a). It is the energy link between two components. It is represented graphically by a harpoon (half
arrow), which points in the direction of positive power flow. The bond represents two variables, effort and flow. In the
electrical domain the effort variable is represented by voltage and the flow by current. It follows that the product of
the effort and flow variables represents the power flowing through the bond. Additional variables can also be derived

Table 1 Basic objects of bond graphs

Group Components Electrical domain example

Storage Capacitive inertial Capacitance inductance
Supply Source of effort, source of flow Voltage source, current source
Reversible transformation Transducer, gyrator Transformer
Irreversible transformation Entropy-producing process Thermal resistance
Distribution 0 and 1 junctions KVL, KCL

377

ZAKI ET AL.

Fig. 3 Basic bonds.

from the bonds. The displacement and momentum energy variables are related to the energy and flow by their time
derivatives.

The next basic component is the junction, which represents a circuit node or mesh (Fig. 3b). At the 0 or common-
effort junction, the efforts are equal, which is analogous to a node in a circuit. At the 1 or common-flow junction, the
flows are equal, which is analogous to a mesh in a circuit.

2. Components
Using the bonds and junctions, it is possible to connect components together in a bond graph. There are different

types of single and multiport interfaces that can be used to represent many configurations. The single-port components
are described below. The first basic elements are the sources of effort or flow. They are analogous to voltage and
current sources in circuit diagrams. Additional single-port components are used to represent resistors, capacitors,
and inductors. They are denoted using the letters R, L, or C (Fig. 4a).

It is possible to represent other electrical circuit components, such as transformers, gyrators, and switches using
two port interfaces but their application and description are beyond the scope of this paper. It is important to note
though that more advanced components exist and they can be used to model electronic components beyond simple
analog ones.

We have now seen how a given bond graph and a set of constitutive relations maps to a mathematical model of
the underlying system. A preferred alternative is a sequence of directed assignment statements such that unknowns
can be immediately and sequentially computed from the knowns on the right-hand side. Such a model is sometimes
referred to as a computational model. Such a causal computational model requires the model variables to be ordered
in a specific cause-effect relationship.

3. Causality
Causality is the determination and representation of the directional relationship between an input and an output

[30]. By adding a causal bar to the end of a bond, the system equations that represent the two variables of effort
and flow can be indicated explicitly. There are many rigorous explanations on how to assign the causality of a bond
and how it relates to the system as a whole [29–31]. Fortunately, a simple definition exists that can be used for the
direct translation of circuit diagrams. The causal stroke is attached to the side of the bond that computes the flow
variable [32]. It is not necessary to assign causality because tools exist to automatically assign it to bond graphs.
It is important for the modeler to know how to assign causality manually because it can aid in the development of
complex bond graphs (Fig. 4b).

Fig. 4 Bond graphs basics.

378

ZAKI ET AL.

Fig. 5 Tunnel diode oscillator.

Example 1.
The tunnel diode oscillator circuit in Fig. 5a, which has been used by many researchers (e.g., [19,21]) as a benchmark,
will be used as an example throughout the paper to demonstrate each step of our methodology. The tunnel diodes
exploit a phenomenon called resonant tunneling due to its negative resistance characteristic at very low forward bias
voltages. This means that for some range of voltages, the current decreases with increasing voltage. This characteristic
makes the tunnel diode useful as an oscillator.

The corresponding bond graph generation goes as follows. Each circuit diagram component is transformed into
its bond graph counterpart. Circuit nodes are represented by 0 junctions and meshes are represented by 1 junctions
as shown in Fig. 5b. This is done according to the bond graphs rules described earlier.

4. Simplification
By choosing to combine certain bond graph elements, it is possible to reduce the complexity of the system without

affecting the overall function. This can result in simpler DAEs that are extracted from the reduced bond graph model.
By using a simpler model, the number of states can be reduced, allowing for a less complex verification problem.

The BondLib library developed by Cellier et al. [5] demonstrates the benefit of object-oriented modeling with
bond graphs. The transistor models for bipolar junction transistor (BJTs) and MOSFETS are true HSpice models that
can be set to different levels of complexity [5]. At each level, parasitics, current leakages, and nonideal effects can be
added to the model by specifying the correct parameter. The parameters are available to the modeler to dynamically
alter the bond graph level.

B. Describing the Analog Behavior
Once the bond graph is built, the set of system equations can be extracted and simplified. We use Mathematica

simplification functionalities [12] in order to remove redundant equations through rewriting techniques. The final
system of equations is the computational model on which we apply the verification.

The dynamical behavior of analog designs is usually represented through equations describing the progressive
change of the state variables. These state variables can be regarded as memory elements that are able to preserve pre-
vious states for a certain amount of time. For instance at the circuit-level capacitance can be seen as a voltage storage
element, whereas inductance as a current storage element.# Analog circuits can be described by nonlinear polynomial
ODEs as follows:

Definition 1 (Analog circuit model).
An analog circuit model is a tuple A = (X , X0, P), with X = Vc1 × Vcn

× · · · × Ilm ⊆ R
d as the continuous state

space with d-dimensions, where Vci
and Ilj are the voltage across the capacitance ci and the current through the

It is worth noting that a resistance is a memoryless element.

379

ZAKI ET AL.

inductance lj , respectively. X0 ⊆ X is the set of initial states (initial voltages on the capacitances and currents through
the inductance), and P : X → R

d is the continuous vector field.

The behavior of such an analog circuit model A is governed by polynomial differential equations of the form:

ẋk = dxk

dt
= Pk(x1, . . . , xd) = a0 +

m∑
l=1

Pl,k(x1, . . . , xd)

where t is the independent real time, Pk (k = 1, . . . , d) is a polynomial of degree m, a0 is a constant, and Pl,k is a
polynomial of degree l with

Pl,k =
∑

i1+···+id=l

ai1,...,id x
i1
1 . . . x

id
d

where ai1,...,id is a constant. We assume that the differential equation has a unique solution for each initial value.
The semantics of the analog model A = (X , X0, P) over a continuous time period Tc = [τ0, τ1] ⊆ R

+ can be
described as a trajectory �x : Tc → X for x ∈ X0 such that �x(t) is the solution of ẋk = Pk(x1, . . . , xd), with initial
condition �x(0) = x and t ∈ Tc, being a time point. We can view the behavior of the analog model A as a transition
system:

Definition 2 (Analog transition system).
The transition system for analog model A is described as a tuple TA = (Q, Q0, σ, L), where q ∈ Q is a configuration
(x, �), x ∈ X and � is a set of intervals where ∪i�0ti ⊆ R

+, ti ∈ �. We have t1, t2 ∈ � for �x ′(t1) = �x ′′(t2) = x

and x ′, x ′′ ∈ X0. q ∈ Q0, when t0 ∈ � and t0 is the singular interval, σ ⊆ Q × Q is a transition relation such that
(qn, qm) ∈ σ if and only if ∃tn ∈ �n, ∃tm ∈ �m. tn < tm, and limtn→tm �

qn
x (tn) = �

qm
x (tm), x ∈ X0. Finally, L is an

interpretation function such that L : Q → R
n × 2R

+
.

The set of reachable states Reach can then be defined as follows: Reach := {q ′ ∈ Q|∃q ∈ Reach(0), t ∈
L�(q ′), x ′ = Lx(q

′), x = Lx(q) such that �x(t) = x ′}, where Reach(0) := Q0.

Example 2.
Consider again the tunnel diode oscillator circuit in Fig. 5a. We focus on the current IL and the voltage VC across the
tunnel diode in parallel with the capacitor. The tunnel diode state equations are extracted from the simplified bond
graph (Fig. 5b) using Dymola. The final equations are given as V̇C = 1

C
(−Id(VC) + IL) and İL = 1

L
(−VC − 1

G
IL +

Vin), where Id(VC) describes the nonlinear tunnel diode behavior and Vin is the DC voltage source. The extracted
equations will be used as an input for the verification engine described in the next section.

IV. Verification Methodology
The verification methodology we propose is illustrated in Fig. 6. Starting with a circuit description as a system of

ODEs, along with specification properties provided in computational temporal logic (∀CTL) [13], we symbolically
extract qualitative predicates of the system. The abstract model is constructed in successive steps. In the basis step,
we only consider predicates that define the invariant regions for the system of equations based on the Darboux theory
of integrability [33]. Informally, the Darboux theory is concerned with the identification of the different qualitative
behaviors of the continuous state space of the system. We make use of such an idea to divide the analog design
state space into qualitatively distinct regions where no transition is possible between states of the different regions.
Satisfaction of properties is verified on these regions using constraint-based methods, which rely on qualitative
properties of the system, by generating new constraints that prove or disprove a property. Hence property verification
provides the advantage of avoiding explicit computation of reachable sets.

If the property cannot be verified at this stage, refinement is needed only for the nonverified regions by adding
more predicates. Conventional model checking is then applied on the newly generated abstract model. The extraction
of the predicates is incremental in the sense that more precision can be achieved by adding more information to the

380

ZAKI ET AL.

Fig. 6 Verification methodology.

original construction of the system. When the property is marked violated, one possible reason is because of the
false negative problem due to the over-approximation of the abstraction. In this case, refinement techniques may be
introduced.

A. Predicate Abstraction
Predicate abstraction is a method where the set of abstract states is encoded by a set of Boolean variables each

representing a concrete predicate. Based on [24], we define a discrete abstraction of the analog model A with respect
to a given n-dimensional vector of predicates � = (ψ1, . . . , ψn), where ψ : R

d → B, with B = {0, 1} and d being the
dimension of the ODE system.A polynomial predicate is of the form ψ(x) := P(x1, . . . , xd) ∼ 0, where ∼∈ {<, �}.
Hence, the infinite state space X of the system is reduced to 2n states in the abstract system, corresponding to the 2n

possible Boolean truth evaluates of �.

Definition 3 (Abstract transition system).
An abstract transition system is a tuple T� = (Q�, �, Q�,0), where:

• Q� ⊂ L × B
n is the abstract state space for n-dimensional vector predicates, where an abstract state is defined

as a tuple (l, b), with l ∈ L being a label and b ∈ B
n.

• �⊆ Q� × Q� is a relation capturing abstract transitions such that {b � b′|∃x ∈ ϒ�(b), t ∈ R
+ : x ′ =

�x(t) ∈ ϒ�(b′) ∧ x → x ′}, where the concretization function: ϒ� : B
n → 2R

d

is defined as ϒ�(b) := {x ∈
R

d |∀j ∈ {1, , . . . , n} : ψj(x) = bj }.
• Q�,0 := {(l, b) ∈ Q� |∃x ∈ ϒ�(b), x ∈ X0} is the set of abstract initial states.

We define the set of reachable states as follows: Reach� = ⋃
i�0 Reach(i)

� , where Reach(0)
� = Q�,0, Reach(i+1)

� =
Postc(Reach(i)

�), ∀i � 0 and Postc(l, b) := {(l′, b′) ∈ Q� |(l, b) � (l′, b′)}. We can then deduce the following
property between concrete and abstract reachable states.

Lemma 1.
Given an analog abstract transition system T�(A) and a vector of predicates �, the following holds: Reach ⊆ {q ∈
Q|∃(l, b) ∈ Reach� : x ∈ ϒ�(b) ∧ Lx(q) = x}∗∗

∗∗ The proof of the lemma can be found in [34].

381

ZAKI ET AL.

B. Abstraction-Based Verification
The common concept between safety verification based on constraint solving and model checking based on

predicate abstraction is the requirement of over-approximation for the reachable states.
Given that the analog model transition system TA representing the analog behavior and a property ϕ expressed

in ∀CTL, the problem of checking that the property holds in this model written as TA |= ϕ can be simplified to the
problem of checking that a related property holds on an approximation of the model T� , i.e., T� |= ϕ. More formally,
the main preservation theorem can be stated as follows [25]:

Theorem 1.
Suppose T� is an abstract model of TA, then for all ∀CTL state formulas describing T� and every state of TA, we
have s̃ |= ϕ̃ ⇒ s |= ϕ, where s ∈ γ (s̃). Moreover, T� |= ϕ̃ ⇒ TA |= ϕ.

If a property is proved on an abstract model T� , then we are done. If the verification of T� reveals T� � ϕ̃, then we
cannot conclude that TA is not safe with respect to ϕ̃, since the counterexample for T� may be spurious. To remove
spurious counterexamples, refinement methods can be applied on the abstract model. The proof of Theorem 1 can
be found in [25].

C. Invariants
Usually, a continuous system has a behavior that varies in different regions of phase space which boundaries are

defined by special system solutions known in the literature as Darboux invariants [33]. These invariants partition the
concrete state space into a set of qualitative distinctive regions.

Definition 4.

Given the system of ODEs dxk

dt
= Pk(x1(t), . . . , xd(t)), with k = 1, . . . , d (dx

dt
= P(x), x ∈ R

d , and P =
(P1, . . . ,Pd)), we define the corresponding vector field as DP = P.∂x = ∑d

k=1 Pk
∂

∂xk
.

The correspondence between the system of ODEs and the vector field DP is obtained by defining the time
derivative of functions of x as follows. Let G be a function of x: G : R

k → R, then dG
dt

:= Ġ = DP(G) = P.∂xG. The
time derivative is called the derivative along the flow since it describes the variation of function G of x with respect
to t as x evolves according to the differential system. When DP(G) = 0, ∀x ∈ R

k , we have a time independent first
integral of DP. Several methods were developed recently based on the Darboux integrability theory [21], which is
a theory concerned with finding closed form solutions of a system of ODEs, to tackle the problem by looking for a
basis set of invariants, i.e., Darboux invariants. Rather than looking at functions that are constant on all solutions,
we look at functions that are constant on their zero level set. Darboux polynomials Ji provide the essential skeleton
for the phase space from which all other behaviors can be qualitatively determined.

Definition 5 (Darboux Polynomials [33]).
Given a vector field DP = ∑d

i=1 Pi
∂

∂xi
associated with the system dx

dt
= P(x), a Darboux polynomial is of the form

J (x) = 0 with J ∈ R[x], when DJ = KJ , where K = K(x) is a polynomial called the cofactor of J = 0.

Lemma 2.
Given a system of ODEs and a vector field Df, J is an invariant of the system if J divides Df, more formally, if
there exists K ∈ R[x] such that Df(J) = KJ . The solution set of the system vanishes on the curve of J .

Proof. We can always represent the system by the associated vector field at each point F(x) = P(x) and ∇J · F =
kJ , where ∇J denotes the gradient vector related to J (x) and · is the scalar product. When J = 0, ∇J · F = 0,
meaning that ∇J is orthogonal to the vector field F at these points. Therefore F is tangent to J = 0.

In the context of abstraction, we define the invariant regions as conjunction of Darboux invariant predicates. An
invariant region can be considered as an abstraction of the state space that confines all the system dynamics initiated
in that region:

382

ZAKI ET AL.

a) Analog circuit schematic b) Darboux invariants

Fig. 7 Illustrative nonlinear analog circuit.

Definition 6 (Invariant Regions).
We say that a region V is an invariant region of an analog model A such that P(x(0)) = s0 |= V, P(x(ς)) = sς |= V,

and ∀t ∈ [0, ς], P(x(t)) = st |= V . Let V = {x ∈ R
k|x |= �}, be an invariant region, where � is a conjunction of

Darboux predicates (each is of the form p(x) ∼ 0, where p is a polynomial function and ∼∈ {<, �}). If x(0) is some
initial state, then V = V(x(0)) denotes an over-approximation of the set of states reachable from x(0).

Example 3.
Consider the nonlinear circuit shown in Fig. 7a, where the nonlinearity comes from the voltage controlled current
sources for which currents Ics1 and Ics2 are described, respectively, as f1 = −x3

2 + x1 − x2 and f2 = −x3
1 + 2x2.

The voltages across the capacitors c1 and c2 can be described using ODEs, respectively, as follows: ẋ1 = −x3
2 and

ẋ2 = x1 − x3
1 . We identify the corresponding invariants: j1 = 1 − x2

1 − x2
2 and j2 = 1 − x2

1 + x2
2 , which are used to

form three invariant regions: R1 = j1 � 0 ∧ j2 � 0, R2 = j1 < 0 ∧ j2 < 0, and R3 = j1 < 0 ∧ j2 � 0 as shown in
Fig. 7b. Note that j1 � 0 ∧ j2 < 0 is infeasible and therefore discarded.

D. Constraint-based Verification
Constraint solving is the study of systems based on constraints (relation between the variables of the system).

The idea of constraint solving is to solve problems by stating constraints about the problem area and, consequently,
finding solutions satisfying all the constraints. Two categories of constraint solvers are identified [35]:

• Satisfiability constraint solvers: when a constraint solver pronounces the existence of a solution, the constraints
are guaranteed to have a numerical solution. In addition, if a solution is produced, then it is guaranteed that
this solution satisfies the constraints. One such solver is Rsolver [36] and Mathematica built-in functions like
Reduce and FindInstance [12].

• Unsatisfiability constraint solvers: if a constraint solver pronounces the infeasibility of the input constraints,
then this result is sound. If no solution is produced, then this means that the system is infeasible. Realpaver [37]
is an example of this category.

In constraint-solving techniques, the uncertainty of numerical variables are over-approximated using intervals
of real numbers to make safe decisions possible. Interval-based arithmetic techniques provide efficient and safe
methods for solving continuous constraint satisfaction problems where real variables are constrained by equalities
and inequalities. The soundness is inherited from the inclusion property of interval arithmetics [38].

V. Invariant Based Verification
In this section, we propose a qualitative verification approach for analog circuits based on constraint-based

methods. The basic idea is to apply quantified constraint-based techniques to answer questions about qualitative
behaviors of the designs, by constructing functions that validate or falsify the property. The idea is different from

383

ZAKI ET AL.

 a) Safety verification (Example 4) b) Switching verification (Example 5)

Fig. 8 Constraint based verification for the circuit in Fig. 7(a).

conventional approaches as it does not require the computation of the explicit reachable states. We consider two
types of properties that can be verified using that approach, namely safety and switching properties.

A. Safety Properties
Safety properties can be expressed in CTL [13] as ∀�p; meaning that always on all executions the constraint

predicate p is satisfied for a set of initial conditions. The verification starts by getting the dual property ∃♦¬p (which
means that there is an execution falsifying the constraint p) and applies constraint solving on the dual property within
the invariant regions of interest. In case of unsatisfiability, we conclude that the original property is satisfied in the
region, otherwise we cannot conclude the truth of the property and a refinement model providing more details of the
region is constructed.

Proposition 1 (Safety Property Verification).
∀�P is always satisfied in an invariant region V , if its dual property ∃♦¬P is never satisfied in that region†† .

Example 4.
Consider the circuit in Example 3, with initial conditions x1(0) ∈ [−0.7, −1.1] and x2(0) ∈ [0.5, 0.9]. Suppose
the property to check is ∀�P := x2

1 + x2 − 3 < 0 (see Fig. 8a), meaning that all flows initiated from x(0) =
(x1(0), x2(0)), will be bounded by x2

1 + x2 − 3. The following regions satisfy the initial conditions R1 = j1 �
0 ∧ j2 � 0 and R3 = j1 < 0 ∧ j2 � 0. We check whether ∃♦P := x2

1 + x2 − 3 � 0 is satisfiable in the invariant
regions R1 and R3. By applying constraint solving in Mathematica, we find that for the region R3, the constraints
system is satisfiable, and hence the original property cannot be verified and the state space of the region needs to be
refined. For the region R1, the constraints system is infeasible, and therefore we conclude that the safety property is
satisfied.

It is worth noting that the barrier-certificate method [28]‡‡ can be applied as a complementary to our method. In
fact, Darboux predicates used as the basis of invariant regions can be considered as natural barrier certificates that
are constructed without the need of initial and final constraints, hence reducing computational efforts.

B. Switching Properties
A special case of reachability verification ∃♦Q is the switching condition verification, i.e., starting from a set

of initial conditions, the system will eventually cross a threshold, triggering a switching condition. Such property

†† More details about the techniques as well as the proofs of the propositions in this paper can be found in [34].
‡‡ A barrier certificate is an invariant that separates system behavior from a bad state and hence is used as a proof of safety
verification.

384

ZAKI ET AL.

is of great importance, for instance, a MOSFET transistor acting as a switch changes states based on the voltage
condition applied on its gate. We consider here a restricted form of the switching property, where we assume that
threshold predicates divide the invariant region by intersecting the invariant region boundaries (at least two Darboux
predicates). Given an invariant region V , a predicate Q is a switching condition if

∧k
i=0 ∃x.(Q(x) = 0) ∧ (Ii (x) = 0),

where k � 2 and I is a Darboux invariant. The switching verification can be stated as follows:

Proposition 2 (Switching Property Verification).
∃♦Q is satisfied in a region V , if Q(x(0)) < 0 and DP(Q) > 0 or if Q(x(0)) > 0 and DP(Q) < 0, in the region V .
If these conditions are satisfiable, we conclude that the property is verified and switching occurs.

Example 5.
Consider the circuit shown in Fig. 7(a), where the voltages across the capacitors c1 and c2 are described,
respectively, as follows: ẋ1 = x2

1 + 2x1x2 + 3x2
2 and ẋ2 = 4x1x2 + 2x2

2 , with initial conditions x1(0) ∈ [0.5, 1] and
x2(0) ∈ [0.3, 0.5]. Suppose that the switching condition property to check is∃♦x1 + x2 − 5 = 0, meaning that switch-
ing occurs when a certain trajectory crosses the threshold Q1 := x1 + x2 − 5 = 0 (see Fig. 8b). We construct the
Darboux functions: j1 := x2, j2 := x1 + x2, j3 := x1 − x2. The region R1 = j1 > 0 ∧ j2 > 0 ∧ j3 > 0 satisfies the
initial conditions. In addition, the predicate x1 + x2 − 5 < 0 satisfies the initial condition and DP(x1 + x2 − 5) > 0
because DP(x1 + x2 − 5) = (x1 + x2)(x1 + 5x2) is always positive in R1. Consider the initial conditions X(0)1 :=
(x1(0) ∈ [−10, −8] and x2(0) ∈ [4, 5]) and X(0)2 := (x1(0) ∈ [−0.5, −1] and x2(0) ∈ [0.3, 0.5]) in the invariant
region R2 = j1 > 0 ∧ j2 < 0 ∧ j3 < 0. For the switching condition Q2 := −x1 + x2 − 5 = 0, we find that the ini-
tial condition X(0)1 satisfies −x1 + x2 − 5 > 0, and X(0)2 satisfies −x1 + x2 − 5 < 0 while DP(−x1 + x2 − 5) =
−(x1 − x2)

2 will always be negative in region R2, and therefore we conclude that the switching will occur for the
initial condition X(0)1 but not for X(0)2.

Sometimes constraint-based verification fails to provide answers for the verification problem as the above methods
are not complete in general. In addition, more complex properties like oscillation cannot be proved using the above
method. We complement the approaches described in this section, by the predicate abstraction method allowing
conventional model checking to be applied.

VI. Predicate Abstraction
A. Abstract State Space

In general, the effectiveness of the predicate abstraction method depends on the choice of predicates. In addition
to using Darboux predicates described in Sect. IV.C, we choose predicates identified in the properties of interest. In
addition to temporal property predicates, basic ideas from the qualitative theory of continuous systems can be adapted
within the predicate abstraction framework. The termination of the predicate generation phase is not necessary for
creating an abstraction. We can stop at any point and construct the abstract model. A larger predicate set yields a
finer abstraction as it results in a larger state space in the abstract model.

A set of predicates can be constructed using the notion of critical forms, which are special functions along
them, the vector field direction being either vertical or horizontal. In between these forms, there can be no vertical
nor horizontal vectors. In a region (abstract state) determined by the critical forms, all vectors follow one direction.
These predicates can be obtained easily by setting ẋ = 0. A generalization of critical forms is the concept of isoclines.
Isoclines are functions over which the system trajectories have a constant slope. A predicate π is an isocline of a
system of ODEs if and only if ∃ai ∈ R with i = 1, . . . , d such that �d

i=1aiPi (x)|π = 0. Isocline and critical forms
provide qualitative information about the system behavior. Hence, such information can be used in refuting certain
behavior that is shown unreachable. For instance, by knowing different constants ai , we deduce the direction of the
flow crossing the isoclines and therefore we decide how to build transitions between abstract states. Finding different
isocline predicates within an invariant region can be achieved by solving constraints on the parameters of predefined
forms of an isocline predicate.

Another kind of predicates, we propose, referred to as conditioned predicates, has the property that under specific
conditions, they provide certain information about the solution flow. A predicate π is a conditioned predicate of a
system of ODEs with conditions �1, . . . , �d , if it is of the form

∑n
i=1 �iPi (x)|π = 0, where the conditions �i are

385

ZAKI ET AL.

polynomials with i = 1, . . . , d, and d is the system dimension. For instance, consider the 3-dimensional system with
the state variables x, y, z, and the property predicate z > 1. We can construct another predicate that intersects z > 1
at specific conditions, say ẏ

ẋ
= 0. Then, the new predicate is of the form ẏ − (z − 1)ẋ = 0.

Example 6.
Consider the analog circuit in Example 3. The critical forms predicates are p1 := x1, p2 := x2, p3 := 1 − x1, and
p4 := 1 + x1, as shown in Fig. 9a. For illustration purposes, we choose two isocline predicates p5 := x1 − x3

1 + x3
2

and p6 := x1 − x3
1 − x3

2 as shown in Fig. 9b. Suppose we are interested to verify a property including the predicate
p7 := x2 − x1 > 0.3, we can construct the conditioned predicate p8 := ẋ2 − (x2 − x1 − 0.3)ẋ1 = 0 as shown in
Fig. 9c. To build the abstract state space, we have three invariant regions and eight predicates. As certain combination
of predicates are infeasible, the number of abstract states is <28 abstracts states. In fact, region R1 = j1 � 0 ∧ j2 � 0
is subdivided into 29 abstract states.

Other methods for finding useful predicates were developed in [26], where the authors proposed a way to extract
predicates from polynomial ODEs by looking at higher derivatives. If p ∈ P , then add ṗ, the derivative (with respect
to time) of p, to the set P unless ṗ is a constant or a constant factor multiple of some existing polynomial in P .

Predicates related to the basic functionality of the design of interest can also be provided in a manual fashion. The
conventional analysis of circuits can be an interesting direction for obtaining attractive predicates. It is worth noting
that the termination of the predicate generation phase is not necessary for creating an abstraction. We can stop at any
point and construct the abstract model. A larger predicate set yields a finer abstraction as it results in a larger state
space in the abstract model.

B. Computing Abstract Transitions
One main issue in constructing abstract state transition systems is the identification of the possible transitions. As

we divide the state space into invariant regions, we need only to construct transitions between abstract states within
a region. Therefore, we do not need to construct an abstract model for the whole state space. In general, information
from the solution of the ODEs is required to describe transitions between abstract states. In practice, each abstract
transition is initialized to the trivial relation relating all states and then stepwise refined by eliminating infeasible
transitions. This guarantees that any intermediate result represents an abstraction and the refinement can be stopped
at any point of time. In the remaining of this section, we use a set of different rules to construct transition between
abstract states.

The simplest rule to use is the Hamming distance (HD) rule [26]. The HD is the number of predicates for
which the corresponding valuations are different in different abstract states. For instance, the HD between state
s1 := (p1 = 1 ∧ p2 = 0 ∧ p3 = 1 ∧ p4 = 1) and state s2 := (p1 = 1 ∧ p2 = 0 ∧ p3 = 0 ∧ p4 = 1) is 1, written as
HD(s1, s2) = 1. Given two abstract states s1 and s2, we say that a transition exists between two abstract states only

 a) Critical forms predicates b) Isocline predicates c) Conditioned predicates

Fig. 9 Predicates for the circuit in Fig. 7(a).

386

ZAKI ET AL.

if HD(s1, s2) = 1. The next rule we apply is based on the generalized MVT [35], which is an extension of the MVT
for n-dimension.

Theorem 2 ([35]).
If x(t) is continuous on a time interval t1 � t � t2 and differentiable on t1 < t < t2, and assuming that there exists
a vector V orthogonal to x(a) and to x(b), then there is tc : t1 < Tc < t2 such that V is orthogonal to ẋ(tc).

We use quantified constraint-based methods to check whether such a condition is satisfied between two abstract
states. If the MVT is not satisfied, we deduce that no transition exists between the two states. The above rules give an
over-approximation of the transition system as no information about the vector field direction is used. To remove
such redundant transitions in the region of interest, we complement the above rules by applying the intermediate
value theorem as a way to identify the flow direction. In the context of abstraction, a transition between two abstract
states exists if a predicate valuation changes during the execution over an interval domain as follows:

Theorem 3.
Given a predicate λ, two states S1 = (l, b) and S2 = (l′, b′) differing only on the valuation of λ and a time step interval
solution I : {a1 � x � a2}, there is a transition between S1 and S2 if b |= [[λ]]a1 (i.e., λ(a1) ∈ γ (b)), b′ |= [[λ]]a2

(i.e., λ(a2) ∈ γ (b′)), [[λ]]a1 �= [[λ]]a2 �= 0 and ∃x such that [[λ]]x = 0, with the interpretation function [[.]] : R
d →

{+, −, 0}.

To check for the above condition, we use interval analysis to guarantee that the solution is reliable; the real
solutions are enclosed by the computed intervals. Such a guarantee is derived from the fundamental theorem of
interval analysis [38].

Practically, building the transitions is based on using constraint solving as a means for refuting invalid transitions.
This can be achieved by posing the conditional predicates on a possible transition as a safety property. If the property
is unsatisfied, then it is implied that the transition does not exist.

Example 7.
Consider the BJT-based Colpitts oscillator shown in Fig. 10a. Correct functionality ensures that the BJT will never
go to the saturation region [39]. In fact, the BJT will either be in the Cut-off mode or Forward active mode. The state
space is subdivided into four regions according to the BJT modes of operations (Cut-off, Reverse active, Forward
active, and Saturation) with threshold voltage Vth = 0.75.

Fig. 10b is a snapshot of the Hsolver code written to represent the abstract states (each corresponding to a BJT
mode of operation), the possible transitions between the states, and the property to verify. For instance, the property

Fig. 10 BJT Colpitts circuit.

387

ZAKI ET AL.

shown ensure that no transition occurs from Forward active (m1) to Saturation (m3). It can be validated by proving
that ∀G VC2 < 0.75 ∧ VC1 + VC2 < 0 is False, where VC1 and VC2 are voltages across the capacitors C1 and C2.

VII. Implementation and Experiments
A. Implementation

For experimentation purposes, we used Mathematica’s algebraic manipulation and quantified constraint-solving
capabilities [12] for the constraint-based verification and for the construction of the abstract model. Conventional
model checking on the abstract models is applied using SMV and Hsolver. For instance, the built-in Mathematica
function Reduce[expr, vars] simplifies the statement expr by solving equations or inequalities for the state variables
vars = {v1, v2, . . . , vm} and eliminating quantifiers. Reduce gives True if the expr is proved to be always true, False
if expr is proved to be always false and a reduced expr otherwise. For example, the safety verification problem in
Example 4 can be formulated using Reduce as follows: Reduce[Exists[{x1, x2}, 1 − x2

1 − x2
2 � 0&&1 − x2

1 + x2
2 �

0, −3 + x2
1 + x2 �= 0], {x1, x2}].

The problem of finding invariants is an important part of the methodology. We need to find Darboux invariants
and in the case of reachability verification, we look for invariants bounding the reachable states. Finding invariants
is based on the evaluation of the coefficients of the predefined forms of polynomials. In this algorithm, we start with
an invariant form with an initial degree and check if such an invariant exists; if not, we increase the degree to form a
new polynomial. A bound on the degree must also be specified to ensure termination of the search of the invariants.
An arbitrarily assigned bound at the beginning of the algorithm is usually proposed, hence ensuring termination. This
is possible using the Mathematica FindInstance function, for example. FindInstance[expr, vars] finds an instance
of vars that makes expr True if an instance exists, and gives {} if it does not. The result of FindInstance is of
the form {{v1 → inst1, v2 → inst2, . . . , vm → instm}}, where insti is the provided value. For example, to find the
Darboux invariants j we apply FindInstance as follows: FindInstance[ForAll[{x, y}, Dj == Kj], {coefs}], where
j is a polynomial in x, y, with unknown coefficients coefs and K is the cofactor.

B. Experimentation Results
We have applied the verification methodology proposed in this paper to a variety of circuits including Colpitts,

Tunnel diode oscillator, and other basic RLC circuits¶¶ .

1. Tunnel Diode Circuit
Consider the tunnel diode circuit in Example 2 with the set of parameters {C = 1000e−12, L = 1e−6, G =

2000e−3, Vin = 0.3} and the initial values {VC = 0.131V, IL = 0.055A}. We are interested to verify the circuit
behavior in the region bounded by the constraints −0.5 V � VC � 1.2 V and −0.5 A � IL � 0.2 A using predicate
abstraction.

We verify that the preceding combination of parameters and initial conditions do not produce oscillatory behavior.
The behavior in question is stated as the safety property Gv � 0.3. The validation of the property ensures the non-
existence of oscillation. We code the circuit equations (determined in Example 2) along with the property in the
HSolver language. After verification, the results indicate that the property is satisfied. We can therefore conclude that
the chosen parameters do not allow the circuit to oscillate.

2. MOSFET-Based Colpitts Oscillator
The circuit diagram for a MOS transistor-based circuit is shown in Fig. 11a. For the correct choice of component

values the circuit will oscillate. This is due to the bias current and negative resistance of the passive tank. The property
we analyze is whether for the given parameters and initial conditions the circuit will die out (not oscillate) as shown

¶¶ More details about experimental studies and the bond graph transformations for the circuits will not be presented here because
of space constraints; details of the verification can be found in [34,40].

388

ZAKI ET AL.

Fig. 11 Colpitts circuit.

in Fig. 11b. The extracted equations are described as follows:

V c1
′ := 1.2 − (V c1 + V c2)

R ∗ C
+ I l

C
− Ids

C
, V c2

′ := −Iss

C
+ 1.2 − (V c1 + V c2)

R ∗ C
+ I l

C
, and

I l′ := 1.2 − (V c1 + V c2)

L

with

Ids :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, V c2 > 0.3

kp ∗ w

l
∗ ((0.3 − V c2) ∗ (V c1 + V c2) − 0.5 ∗ (V c1 + V c2)

2), V c1 + V c2 < 0.3
kp

2
∗ w

l
∗ (0.3 − V c2)

2, V c1 + V c2 � 0.3

Oscillation will not occur if the current cannot exceed a certain bound. More precisely, if verified to be true, the
property ∀GIl > 0.004 ∧ Il < 0.004 implies no oscillation. The system equations, the property of interest along with
the required constraints were then translated into the HSolver code. To apply predicate abstraction, the state space
is abstracted into three regions (abstract states) because of the different states of the MOSFET transistor within the
circuit. The property was verified to be true indicating no oscillation. Fig. 11b represents the circuit simulation for
the given parameters, where the current will oscillate until it dies out at Il = 0.

3. Non-linear Analog Circuit
Consider the circuit in Example 3, with initial conditions x1(0) ∈ [−0.7, −1.1] and x2(0) ∈ [0.5, 0.9]. We want

to verify the following ∀CTL property on the set of trajectories:

∀FP := x2
1 + x2 − 3 � 0

which can be understood given the set of initial conditions, on every computation path, in the future the vector field
will always cross a threshold condition. We already verified in Example 4 that this cannot happen for the initial
conditions inside Region R1, but with the invariant checking applied, we could not deduce information regarding the
behavior in region R3. After providing the required set of predicates, we only construct corresponding abstract state
transition graphs (ASTG) for regions R1, and R3. Using the SMV model checker [13], we find, that given the initial
conditions, such a property will be indeed satisfied in region R3.

4. RLC Circuit Oscillator
Checking for occurrence of oscillation is not always possible using predicate abstraction, due to the difficulty

of generating an abstract model with no spurious transitions, in some cases we were successful to accomplish the
verification.

389

ZAKI ET AL.

a) Analog circuit b) Bond Graph

Fig. 12 Non-linear oscillator.

Fig. 13 Phase portrait and invariant regions for circuit in Fig.12(a).

We verified the oscillation property for the circuit shown in Fig. 12a, with a nonlinear voltage source and nonlinear
current source cs described using ODEs, respectively, as follows:

İl = −Vc − 1

5
V 2

c and V̇c = −2Il − I 2
l + I 3

l

The equations are extracted from the bond graph shown in Fig. 12b as explained in the methodology. After that,
using Mathematica, we generate the following invariants:

j1 = 1 − 5I 3
l − 15I 2

l + V 3
c + 15

2 V 2
c + 15

4 I 4
l

We can therefore construct two invariant regions R1 := j1 � 0 and R2 := j1 > 0. Given the state space and
invariant regions as shown in Fig. 12b, we verify the following ∀CTL property on the set of trajectories:

∀G(∀F(Vc > Il)) ∧ ∀G(∀F(Vc < Il))

which can be understood, as on every computation path, whenever the capacitor voltage Vc value exceeds the
inductor current value Il , it will eventually decrease below Il again and vice versa. This property checks for oscil-
lation behavior of the circuit. We constructed the abstract transition graph for each region and verified the property
using SMV. We found indeed that the circuit will always oscillate only inside the bounded regions as illustrated
in Fig. 13.

390

ZAKI ET AL.

VIII. Conclusion
In this paper, we proposed a novel approach for the verification of analog designs. The greatest advantage of

our methodology is the lack of an exhaustive simulation that is commonly encountered in the formal verification of
analog designs. The major contributions are the following:

• By using bond graphs as a framework to represent circuits, models can be constructed at several levels of
abstraction. This can reduce the complexity of the system equations as well as simplify complex behavior.

• A qualitative abstraction approach for the verification of analog properties was proposed using a combination
of techniques from predicate abstraction and constraint solving along with model checking.

We adapted the concept of lazy abstraction for the verification of analog designs. To this aim, we identified
a set of basic qualitative predicates (Darboux polynomials) as invariance predicates, which helped avoiding
the construction of an abstract model for the whole state space. We proposed a constraint-solving approach
for the verification of safety and switching properties. Our method does not require explicit representation of
the state space and relies on functions that prove or disprove circuit properties

• When compared to similar research, our verification methodology overcomes the time bound limitations of
other exhaustive methods.

Future work includes investigating switched bond graphs for models of mixed signal designs. This will allows us to
extend the predicate abstraction to support analog and mixed signal systems. We also plan to explore the verification
of more case studies that include in addition the AMS designs, RF, and mechanical components.

References
[1] Xia, S., Divito, B., and Munoz, C., “Toward Automated Test Generation for Engineering Applications,” Proc. IEEE/ACM

International Conference on Automated Software Engineering, 2005, pp. 283–286.
[2] Nadjm-Tehrani, S., and Stromberg, J., “Formal Verification of Dynamic Properties in an Aerospace Application,” Formal

Methods in System Design, Vol. 14, No. 2, 1999, pp. 135–169.
[3] Cousot, P., “Proving the Absence of Run-Time Errors in Safety-Critical Avionics Code,” Proc. IEEE/ACM Conference on

Embedded Software, 2007, p. 79.
[4] Vlach, J., and Singhal, K., Computer Methods for Circuit Analysis and Design, Kluwer, Norwell, MA, 2003.
[5] Cellier, F. E., Clauss, C., and Urquia, A., “Electronic Circuit Modelling and Simulation in Modelica,” Proc. Eurosim

Congress on Modelling and Simulation, Vol. 2, 2007, pp. 1–10.
[6] Maehne, T., andVachoux,A., “Proposal for a Bond Graph based Model of Computation in SystemC-AMS,” Proc. Languages

for Formal Specification and Verification, Forum on Specification & Design Languages, 2007.
[7] Cousot, P., and Cousot, R., “Abstract Interpretation:A Unified Lattice Model for StaticAnalysis of Programs by Construction

or Approximation of Fixpoints,” Proc. ACM Principles of Programming Languages, 1977, pp. 238–252.
[8] Graf, S., and Saidi, H., “Construction of Abstract State Graphs with PVS,” Computer Aided Verification, LNCS 1254,

Springer, Berlin, 1997, pp. 72–83.
[9] Henzinger, T., Jhala, R., Majumdar, R., and Sutre, G., “LazyAbstraction,” Proc. ACM Principles of Programming Languages,

2002, pp. 58–70.
[10] Elmqvist, H., “Dymola – Dynamic Modelling Language,” User’s Manual, Dynasim, 1994, http://www.dynasim.se.
[11] Ratschan, S., and She, Z., “SafetyVerification of Hybrid Systems by Constraint Propagation BasedAbstraction Refinement,”

Hybrid System: Computation and Control, LNCS 3414, Springer, Berlin, 2005, pp. 573–589.
[12] Wolfram, S., Mathematica: A System for Doing Mathematics by Computer,Addison Wesley Longman Publishing, Longman,

1991.
[13] Clarke, E., Grumberg, O., and Peled, D. A., Model Checking, MIT Press, Cambridge, MA, 1999.
[14] Granda, J., and Montgomery, A., “Automated Modelling and Simulation Using the Bond Graph Method for the Aerospace

Industry,” Proc. AIAA modelling and Simulation Technologies Conference and Exhibit, 2003.
[15] Stromberg, J.-E., Nadjm-Tehrani, S., and Top, J., “Switched Bond Graphs as Front-end to Formal Verification of Hybrid

Systems,” Proc. of Verification and Control of Hybrid Systems, LNCS 1066, Springer, Berlin, 1996, pp. 282–293.
[16] Kurshan, R. P., and McMillan, K. L., “Analysis of Digital Circuits through Symbolic Reduction,” IEEE Transactions on

Computer-Aided Design, Vol. 10, 1991, pp. 1350–1371.
[17] Greenstreet, M. R., and Mitchell, I., “Reachability Analysis Using Polygonal Projections,” Hybrid System: Computation

and Control, LNCS 1569, Springer, Berlin, 1999, pp. 103–116.
[18] Dang, T., Donze, A., and Maler, O., “Verification of Analog and Mixed-signal Circuits using Hybrid System Techniques,”

Formal Methods in Computer-Aided Design, LNCS 3312, Springer, Berlin, 2004, pp. 14–17.

391

http://www.dynasim.se.

ZAKI ET AL.

[19] Gupta, S., Krogh, B. H., and Rutenbar, R.A., “Towards FormalVerification ofAnalog Designs,” Proc. IEEE/ACM Conference
on Computer Aided Design, 2004, pp. 210–217.

[20] Frehse, G., Krogh, B. H., and Rutenbar, R. A., “Verifying Analog Oscillator Circuits Using Forward/Backward Abstraction
Refinement,” Proc. IEEE/ACM Design, Automation and Test in Europe, 2006, pp. 257–262.

[21] Hartong, W., Klausen, R., and Hedrich, L., “Formal Verification for Nonlinear Analog Systems: Approaches to Model and
Equivalence Checking,” Advanced Formal Verification, Kluwer, Norwell, MA, 2004, pp. 205–245.

[22] Zaki, M., Al Sammane, G., Tahar, S., and Bois, G., “Combining Symbolic Simulation and Interval Arithmetic for the
Verification of AMS Designs,” Proc. IEEE International Conference on Formal Methods in Computer-Aided Design, 2007,
pp. 207–215.

[23] Zaki, M., Tahar, S., and Bois, G., “Formal Verification of Analog and Mixed Signal Designs: A Survey,” Microelectronics
Journal, Vol. 39, No. 12, Elsevier B.V. Pub., pp. 1395–1404.

[24] Alur, R., Dang, T., and Ivancic, F., “Reachability Analysis via Predicate Abstraction,” Hybrid Systems: Computation and
Control, LNCS 2289, Springer, Berlin, 2002, pp. 35–48.

[25] Clarke, E., Fehnker, A., Han, Z., Krogh, B. H., Stursberg, O., and Theobald, M., “Verification of Hybrid Systems based
on Counterexample-Guided Abstraction Refinement,” Tools and Algorithms for the Construction and Analysis of Systems,
LNCS 2619, Springer, Berlin, 2003, pp. 192–207.

[26] Tiwari, A., “Abstractions for hybrid systems,” Formal Methods in System Design, Vol. 32, No. 1, 2008, pp. 57–83.
[27] Sankaranarayanan, S., Sipma, H., and Manna, Z., “Constructing Invariants for Hybrid Systems,” Hybrid Systems:

Computation and Control, LNCS 2993, Springer, Berlin, 2004, pp. 539–554.
[28] Prajna, S., and Jadbabaie, A., “Safety Verification of Hybrid Systems Using Barrier Certificates,” Hybrid Systems:

Computation and Control, Springer, Berlin, 2004, pp. 477–492.
[29] Paynter, H. M., Analysis and Design of Engineering Systems, The MIT Press, 1961.
[30] Karnopp, D., and Rosenberg, R., System Dynamics: A Unified Approach, Wiley, New York, 1975.
[31] Broenink, F., “Introduction to Physical Systems Modelling with Bond Graphs,” Technical Report, Simulation in Europe

(SiE) Working Group, 1999.
[32] Cellier, F. E., and Nebot, A., “The Modelica Bond Graph Library,” Proc. of the Modelica Conference, 2005, pp. 57–65.
[33] Goriely, A., “Integrability and Nonintegrability of Ordinary Differential Equations,” Advanced Series on Nonlinear

Dynamics, Vol. 19, World Scientific, Singapore, 2001.
[34] Zaki, M. H., “Techniques for the Formal Verification of Analog and Mixed-Signal Designs", Ph.D. Thesis, Department of

Electrical and Computer Engineering, Concordia University, September 2008.
[35] Furi, M., and Martelli, M., “A Multidimensional Version of Rolle’s Theorem,” The American Mathematical Society,

Vol. 102, No. 3, 1995, pp. 243–249.
[36] Ratschan, S., “Continuous First-Order Constraint Satisfaction,” Artificial Intelligence, Automated Reasoning, and Symbolic

Computation, LNCS 2385, Springer, Berlin, 2002, pp. 181–195.
[37] Granvilliers, L., “On the Combination of Interval Constraint Solvers,” Reliable Computing, Vol. 7, No. 6, 2001, pp. 467–483.
[38] Moore, R. E., “Methods and Applications of Interval Analysis,” Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1979.
[39] Kennedy, M. P., “Chaos in the Colpitts Oscillator,” IEEE Transactions on Circuits and Systems, Vol. 1, No. 41, 1994,

pp. 771–774.
[40] Denman, W., Zaki, M., and Tahar, S., “Analog Formal Verification via Bond Graphs and Constraint Solving,” Technical

Report, ECE Department, Concordia University, Montreal, Quebec, Canada, April 2008, http://www.hvg.ece.concordia.
ca/Publications/TECH REP/AMS BG TR08

Michael Hinchey
Associate Editor

392

http://www.hvg.ece.concordia.ca/Publications/TECH REP/AMS BG TR08
http://www.hvg.ece.concordia.ca/Publications/TECH REP/AMS BG TR08

